Maths for Computing Assignment 6 Solutions

1. (5 marks) Construct a DFA for $L=\{w \mid w$ contains equal number of occurrences of 01 and 10 as substring of $w\}$ over $\{0,1\}$. For instance, $010 \in L, 0110 \in L, 0111 \notin L, 10110$ $\notin L$. Justify with a casual proof why the constructed DFA is deciding L.
Solution: If a string, say w, starts and ends with a 0 , it must contain equal number of occurrences of 01 and 10 . The intuition is that w can be divided into an odd number of substrings $w_{1} w_{2} \ldots w_{2 k+1}$ such that odd indexed strings are made of 0 s and even indexed strings are made of 1 s . In such a division, both, number of occurrences 01 s and 10 s will be equal to k. Similarly, we can observe that if a string starts and ends with a 1 , it must contain equal number of occurrences of 01 and 10 .

Now, if a string starts with a 0 and ends with a 1 , using the similar division we can observe that number of 01 s will be one more than the number of 10 s . And we can say the vice verse for strings starting from 1 and ending with a 0 .

Therefore, we can simply construct a DFA that checks whether a string starts and ends with the same symbol. The below DFA does that:

2. (5 marks) Prove or disprove that $L=\left\{0^{n} \mid n\right.$ is a perfect square $\}$ over $\{0,1\}$ is a regular language.
Solution: Suppose L is regular and has a DFA of n states. Let us take $w=0^{n^{2}}$. Clearly, $w \in L$ as its length is a perfect square and $|w| \geq n$.

We show now that it is impossible to split w in 3 strings, $w=x y z$, so that it satisfies all three conditions of pumping lemma.

1. If y contains nothing, it will violate condition 1 .
2. Suppose $y=0^{l}$. If $l>n$, then it will violate condition 2 as $|x y|>n$. Now suppose $l \leq n$ and consider the string $x y^{2} z$. Length of $x y^{2} z$ is $n^{2}+l$, which is not a perfect square as $n^{2}+l$ is lying strictly between two perfect squares n^{2} and $(n+1)^{2}$,

$$
n^{2}<n^{2}+l<(n+1)^{2}=n^{2}+2 n+1
$$

Hence, $x y^{2} z \notin L$ and this violates the 3rd condition.
3. (5 marks) Construct a CFG for $L=\left\{a^{i} b^{j} c^{k} \mid i \neq j\right.$ or $j \neq k$, where $\left.i, j, k \in \mathbb{Z}^{+}\right\}$over $\{a, b, c\}$.
Solution: Variables $=\{S, X, Y, A, B, C\}$, terminals $=\{a, b, c\}$, and the start symbol is S. Productions are given below:

$$
\begin{aligned}
S & \rightarrow a X b C \mid A b Y c \\
X & \rightarrow a X b|A| B \\
Y & \rightarrow b Y c|B| C \\
A & \rightarrow a A \mid a \\
B & \rightarrow b B \mid b \\
C & \rightarrow c C \mid c
\end{aligned}
$$

No justification is required, if your grammar is correct.

